

Current Transducer LT 1005-S/SP19

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

٧.

Electrical data

I _{PN}	Primary nominal r.m.s. current				1000		Α	
I _P	Primary current,	measuring range	е			0 ± 240	00	Α
\mathbf{R}_{M}	Measuring resistance @		$T_A = 70^{\circ}C$			$T_A = 85^{\circ}C$		
			${\bf R}_{\rm Mmin}$	$\mathbf{R}_{\text{M max}}$		$\mathbf{R}_{_{\mathrm{M}\mathrm{min}}}$	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	
	with ± 15 V	$@ \pm 1300 A_{max}$	0	10	@ ± 1250		10	Ω
		@ ± 1400 A _{max}	0	7		0	5	Ω
		@ \pm 1500 A _{max}	0	4	@ ± 1450	0 A 1) 0	3	Ω
	with ± 24 V	@ \pm 2200 A _{max}	0	10	@ ± 2100	0 A 1) 3	10	Ω
		@ $\pm 2300 A_{max}$	0	7		3	5	Ω
		$@ \pm 2400 \text{ A}_{max}$	0	5		3	3	Ω
I_{SN}	Secondary nomin	nal r.m.s. curren	t			200		mΑ
K _N	Conversion ratio				1:5000			
V _c	Supply voltage (± 5 %)				± 15 24	4	V
I _C	Current consumption					$30(@\pm 24V)+I_{S} mA$		
V _d	R.m.s. voltage for	r AC isolation tes	st, 50 l	Hz, 1 r	nn	12 ²⁾		kV

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall accuracy @ I _{PN} , T _A = 25°C		± 0.5		%
$\mathbf{e}_{\scriptscriptstyle extsf{L}}$	Linearity error		< 0.1		%
			Тур	Max ± 0.4	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.4	mΑ
I _{OT}	Thermal drift of I	- 25°C + 70°C	± 0.2	± 0.5	mΑ
OI	C	- 50°C + 85°C		± 0.8	mΑ
t,	Response time 4) @ 90 % of I _{PN}		< 1		μs
di/dt	di/dt accurately followed		> 50		A/µs
f	Frequency bandwidth (- 1 dB)		DC 1	50	kHz

R.m.s. voltage for partial discharge extinction @ 10 pC 4.1

General data

	Jonoran Wata			
T _A	Ambient operating temperature		- 40 (-50) +	85 °C
T _s	Ambient storage temperature		- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	40	Ω
Ü		$T_A = 85^{\circ}C$	42	Ω
m	Mass		700	g
	Standards	EN 50155 : 1955		

Notes : 1) I_{P max} @ +85°C & customer measuring resistance

- 2) Between primary and secondary + internal shield + screened cable
- 3) Between secondary and internal shield + screened cable
- 4) With a di/dt of 100 A/µs.

 $I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 2400 A$
- $V_{c} = \pm 15 ... 24 V (\pm 5 \%)$
- **V**_d = 12 kV
- $T_A = -40^{\circ}C (-50^{\circ}C) ... + 85^{\circ}C$
- Secondary connection on screened cable 3 x 0.5 mm²
- Shield between primary and secondary connected to the cable screening
- Railway equipment
- · Customer marking.

Advantages

kV

kV

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060424/3

1.5³⁾

Dimensions LT 1005-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb. - Ft

• Primary through-hole

· Connection of secondary

 Connection to terminal E Recommended fastening torque ± 0.5 mm

4 holes \varnothing 6.5 mm

4 x M6 steel screws

40.5 x 40.5 mm

screened cable 3 x 0.5 mm²

M4 threaded stud

1.2 Nm or 0.88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060328/4